1. Introduction
The IEE’s Technical Helpline receives numerous calls from contractors requesting information on the earthing and bonding requirements for hazardous locations. This article will give an overview of the hazards and problems encountered in those locations and gives information on the performance requirements of earthing and bonding to ensure that the potential for gas ignition, from low voltage electrical sources and equipment, is reduced.

2. The Regulations
BS 7671, Requirements for Electrical Installations, is intended to be applied to electrical installations generally but, in certain cases, they may need to be supplemented by the requirements or recommendations of other British Standards or by the requirements of the person ordering the work. Such cases would include the following:

- Electrical apparatus for explosive gas atmospheres – BS EN 60079
- Electrical apparatus for use in the presence of combustible dust – BS EN 50281

3. Definitions
Often, there is great confusion over earthing, bonding and even use of the nonsensical term, earth-bonding! BS 7671, Requirements for Electrical Installations, defines:

Earthing – ‘Connection of the exposed-conductive-parts of an installation to the main earthing terminal of that installation.’

Bonding – the correct title is ‘Equipotential bonding’.

‘Electrical connection maintaining various exposed-conductive-parts and extraneous-conductive-parts at substantially the same potential’

There are two categories of equipotential bonding:

Main equipotential bonding
Regulation 413-02-02 of BS 7671 states: In each installation, main equipotential bonding conductors shall connect to the main earthing terminal extraneous conductive-parts of that installation.

Supplementary equipotential bonding
Regulation 413-02-27 of BS 7671 states: Where supplementary equipotential bonding is necessary, it shall connect together the exposed conductive-parts of equipment in the circuits concerned and extraneous-conductive-parts.

Supplementary equipotential bonding is not required on every installation, generally however, it is required in areas of increased risk; BS 7671 recognises these areas as ‘Special Locations’. A hazardous location, of course, would be considered as a special location.

BS 7671 further defines:

An extraneous-conductive-part – “a conductive part liable to introduce a potential, generally earth potential and not forming part of the electrical installation”

An exposed-conductive-part – “a conductive part of equipment which can be touched and which is not a live part but which may become live under fault conditions”
Defining Hazardous Locations
BS EN 60079-14: 2003, Electrical apparatus for explosive gas atmospheres – Part 14: Electrical installations in hazardous areas (other than mines), defines the following:
- Explosive atmosphere
- Explosive gas atmosphere
- Hazardous area

Note – The ATEX 137 Directive has adopted the concept of space instead of area; by definition, area is a two-dimensional concept, space is a three-dimensional concept.

In line with BS EN 60079-10: 2003, Electrical apparatus for explosive gas atmospheres – Part 10: Classification of hazardous areas, this article will consider hazardous locations where gas ignition from low voltage electrical sources is possible but, for the purposes of this article, the following locations will not be considered:
- a) mines susceptible to firedamp
- b) the processing and manufacture of explosives
- c) areas where a risk may arise due to the presence of ignitable dusts or fibres
- d) catastrophic failures which are beyond the concept of abnormality
- e) rooms used for medical purposes
- f) areas where the presence of flammable mist may give rise to an unpredictable risk and which require special consideration

Explosive atmosphere
Mixture with air, under atmospheric conditions, of flammable substances in the form of gas, vapour, mist or dust, in which after ignition, combustion spreads throughout the unconsumed mixture.

Explosive gas atmosphere
Mixture with air, under atmospheric conditions, of flammable substances in the form of gas or vapour, in which after ignition, combustion spreads throughout the unconsumed mixture.

Hazardous area
Area in which an explosive gas atmosphere is present, or may be expected to be present, in quantities such as to require special precautions for the construction, installation and use of apparatus.

4. The Zonal Concept
Locations where flammable gases are, or may be, present, are defined by a Zonal concept. The definitions, shown in the table below, of the particular Zones are taken from BS EN 1127-1:1998, Explosive atmospheres. Explosion prevention and protection. Basic concepts and Methodology. Each site will have drawings that will indicate the extent of the Zones. The extent of the Zones is established at the design stage by the competent person who is experienced in this line of work.

5. Hazards and Problems
The prime danger in explosive atmospheres is that of explosions due to incendive sparking. Sparking can be caused by any of the following:

Fault currents and high protective-conductor currents
‘Flashovers’ could occur on poorly earthed circuits where expected and non-expected protective-conductor currents are present.

Static electricity
Static electricity is the retained charge on a

<table>
<thead>
<tr>
<th>Zone</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 0</td>
<td>A place in which an explosive atmosphere consisting of a mixture with air of flammable substances in the form of gas, vapour or mist, is present continuously or for long periods or frequently</td>
<td>Typically, the space above the liquid in a storage vessel.</td>
</tr>
<tr>
<td>Zone 1</td>
<td>A place in which an explosive atmosphere consisting of a mixture with air of flammable substances in the form of gas, vapour or mist, is likely to occur in normal operation occasionally</td>
<td>The space immediately around a storage vessel’s vent-pipe openings which vent during filling.</td>
</tr>
<tr>
<td>Zone 2</td>
<td>A place in which an explosive atmosphere consisting of a mixture with air of flammable substances in the form of gas, vapour or mist, is NOT likely to occur in normal operation but, if it does occur, will persist for a short period only.</td>
<td>Around Zone 1, it is usual to consider the surrounding space to be Zone 2</td>
</tr>
</tbody>
</table>
HAZARDOUS LOCATIONS

All the energy stored on the conductor can be released in one arc or ‘spark’ to catastrophic effect. To retain charge on a conductor, it has to be insulated from other conductors and insulated from earth by means of a non-conductor. Sparking, due to static electricity, can be avoided by using recognised earthing and equipotential bonding techniques.

Static electricity is generated in many ways, including:
- the flow of liquids
- the mixing of powders
- the production of sprays
- the contact and separation of solids

Static electricity causes problems in many industries, such as chemical, pharmaceutical, petroleum, etc.

Static electricity-discharges from a person can be minimized by providing an adequately-conducting path between the person and earth through their footwear and the floor. BS 7193 gives requirements for two types of rubber footwear. Specifications for conducting-flooring materials and for such floors after laying are given in BS 2050 and BS 3187.


Lightning protection system

Regulation 413-02-02 of BS 7671 requires that in each installation, main equipotential bonding conductors shall connect to the main earthing terminal extraneous-conductive-parts of that installation, including the lightning protection system. However, the designer of the installation, who is a competent person, may decide that, due to particular risks, main equipotential bonding of the lightning protection system should be avoided.

For further information, consult: BS 6651, Code of practice for protection of structures against lightning and BS 7430, Code of practice on earthing.

The electrical supply

The following electrical systems are NOT suitable for use in hazardous locations:
- TN-C
- TN-C-S (PME)

In TN-C and TN-C-S (PME) supplies, the neutral conductor is also the earthing conductor; therefore, there could be a potential difference between the main earthing terminal of the installation and the general mass of earth. Incendive sparking could then occur between the earth of the electrical installation and any extraneous metalwork which is in contact with the general mass of earth.

Electrical equipment

Electrical apparatus for use in hazardous locations must be suited for the gas group, the temperature classification and that particular protection concept.

6. Performance requirements of earthing & bonding conductors in hazardous locations

In this section, we’ll look at the sizing of conductors and desired values of resistance.

Sizing of earthing conductors

In accordance with Regulation 543-01-03 of BS 7671, two methods may be used to size earthing conductors or circuit protective conductors (CPCs); the first is the adiabatic equation, the second is Table 54G.

Sizing of equipotential bonding conductors

In accordance with Regulation 547-02-01 of BS 7671 and excluding PME as previously stated, a main equipotential bonding conductor shall have a CSA not less than half the CSA required for the earthing conductor of the installation and not less than 6 mm². The cross-sectional area need not exceed 25 mm² if the bonding conductor is of copper or a CSA affording equivalent conductance in other metals.

Further, Regulation group 547-03 of BS 7671, requires that supplementary equipotential bonding conductors are sized according to both their particular application and whether they are mechanically protected. NOTE – Table 10B of the IEE publication, The On-Site Guide, is a handy reference guide for sizing such conductors.

Further, Guidance Note 3, Inspection and Testing, published by the IEE, advises that supplementary equipotential bonding conductors should have a resistance of 0.05Ω, or less.

Eliminating static electricity

BS 5958-1: 1991, Code of practice for Control of undesirable static electricity – Part 1: General considerations, states that to retain a significant electrostatic charge, a resistance to earth in excess of 1MΩ is required. Generally, resistance between metals in good contact rarely exceeds a few ohms. A value less than 100Ω is readily attainable and is unlikely to deteriorate with time to a level above 1MΩ unless serious corrosion is present.